

WHO: ZiBRA on the world Heath organisation radar. http://www.who.int/csr/research-anddevelopment/emerging-evidence/en/)

Financial Times: https://www.ft.com/content/e5137540-

4064-11e7-9d56-25f963e998b2

Foundations of innovation

Luiz Carlos Alcantara

Fundação Oswaldo Cruz - Bahia

lalcan@bahia.fiocruz.br / alcantaraluiz42@gmail.com

Mobile real-time surveillance of arboviruses in Brazil

June 2016

Emergence of ZIKV as a function of local transmission regime, viral pathogenesis and global mobility

ZIKV Asian genotype molecular clock phylogeny

Combination of genetic and flight data

Zika epidemiology and evolution

Epidemiologia e evolução do Zika vírus

Details can be found in zibraproject.github.io

After the ZiBRA journey, molecular surveillance continued in SP and Bahia.

ZiBRA project

Zika virus sequencing protocoll

ZiBRA's commitment to rapid data sharing

Improving the efficiency of global outbreak control and tracking of diseases

Pre-publication data sharing, in line with WHO Consultation Data Sharing in Emergencies (1-2 Sep 2015):

Research is essential in the context of public health emergencies. The primary purpose of such research is to advance public health, prevent illness and save lives. Researchers should always weigh the public health consequences of their actions in withholding and sharing results.¹

 Twitter: https://twitter.com/zibraproject

 Website: zibraproject.github.io

 Real-time data sharing:
 Github: https://github.com/zibraproject/

 Preliminary Results: virological.org

 Virus diversity: nextstrain.org

¹Aarestrup and Koopmans, Cell 2016

Zika virus MoH notified cases is positively associated with Zika RT-qPCR+ cases

ZiBRA RT-qPCR+ data represents well the 2015-16 epidemic in NE Brazil

ZIKV surveillance

Zika virus MoH notified cases is positively associated with Zika RT-qPCR+ cases and climatic suitability

Genomic diversity of PreAm-ZIKV and Am-ZIKV lineages

Genomic diversity of PreAm-ZIKV and Am-ZIKV lineages

Zika vírus genetic diversity and sequencing statistics

Genomic diversity of PreAm-ZIKV and Am-ZIKV lineages

ZIKV genomics

Origins of ZIKV-AL in Northeastern Brazil

ZIKV genomics

One year of cryptic transmission of ZIKV-AL

ZIKV genomics

One year of cryptic transmission of ZIKV-AL

Within Brazilian geographic regions

One year of cryptic transmission of ZIKV-AL

Spread to other regions in the Americas

Yellow Fever Outbreak in Minas Gerais, 2016-2017(?)

YFV 2016-2017 outbreak

Spatial association between human e primates cases

Suspected and confirmed cases in MG (ELISA e RT-qPCR)

Genomic surveilance of YFV outbreak in SE-Brazil

** SNP 2016-2017

Origen and evolution of the outbreak

Lab Sequence name

FioRJI4278IMonkeyIRioJaneiro_Marical17-04-2017 FioRJI4480IHumanIRioJaneiro_CasimirodeAbreul22-04-2017 FioRJI1818IHumanlEspiritoSanto_Cariacial10-03-2017 FioRJI2115IMonkeylEspiritoSanto_Cariacial09-03-2017 FioRJI3919IHumanlEspiritoSanto_DomingosMartinsI10-04-2017 FioRJI2109IMonkeylEspiritoSanto_Cariacical08-03-2017 FioRJI438IMonkeylEspirito_Santo_DomingosMartinsl31-01-2017 FioRJI532IMonkeyIMinasGerais_CoronelMurtal13-01-2017 FioRJI465IHumanlMinasGerais_Itambacuril30-01-2017 FioRJI460IHumanIMinasGerais_NovoCruzeirol30-01-2017 FioRJI480IHumanIMinasGerais_TeofiloOtonil28-01-2017 M9IHumanlMinasGerais_OuroFinol15-02-2017 M5IPrimatelMinasGerais_SantaRitaDeCaldasI15-02-2017 M11IPrimatelMinasGerais_CaldasI13-02-2017 M7IPrimatelMinasGerais_DelfinopolisI14-02-2017 M78IPrimatelMinasGerais Claravall20-02-2017 IAL_11IPrimatelEspiritoSanto_VendaNovadoImigrantel24-01-2017 NCIES505INHPrimateIDomingosMartinsIEspiritoSantol22-02-2017 NCIES504INHPrimateIDomingosMartinsIEspiritoSantol20-02-2017 FioRJI1536IHumanlEspiritoSanto_Vitorial22-02-2017 IAL_8IPrimatelEspiritoSanto_Itaranal24-01-2017 M58IHumanlMinasGerais_Itambaquril28-01-2017 M123IHumanlMinasGerais_Itambaquril27-01-2017 M68IHumanlMinasGerais_Ladainhal28-01-2017 M16IHumanlMinasGerais_Caratingal09-01-2017 M164lHumanlMinasGerais_Simonesial30-01-2017 M94IHumanlMinasGerais_IImbeDeMinasI13-01-2017 M105IHumanlMinasGerais_PiedadeCaratingal12-01-2017 M210IPrimateilMinasGerais_ValedoRioDocel19-01-2017 M211IPrimatelMinasGerais_ValedoRioDocel13-01-2017 M79IPrimatelMinasGerais_AbreCampol17-02-2017 M51IHumanlMinasGerais_NovoCruzeirol18-01-2017 M107IHumanlMinasGeraisINovoCruzeirol30-01-2017 M47IHumanlMinasGeraisISetubinhal19-01-2017 FioRJIM218_2176IPrimatelBahiaI10-03-2017 M48IHumanlMinasGerais_Ladainhal07-01-2017 M18IHumanlMinasGerais_Itambacuril21-01-2017 M138IHumanlMinasGerais SantaBarbaradoLestel20-01-2017 M216IPrimatelMinasGerais_ZonaDaMatal25-01-2017 M43IHumanlMinasGerais_Potel18-01-2017 M96lHumanlMinasGeraislLadainhal19-01-2017 M83IPrimatelMinasGerais_Ladainhal09-02-2017 M100IHumanlMinasGeraisILadainhal02-01-2017 M25IHumanlMinasGerais_NovoCruzeirol25-01-2017 M36lMinasGeraisINovoCruzeirol14-01-2017 M35IHumanlMinasGerais_TeofiloOtonil20-01-2017 M99IHumanlMinasGeraisITeofiloOtonil21-01-2017 M98IHumanlMinasGeraisITeofiloOtonil10-01-2017 M17IHumanlMinasGerais_Ladainhal14-01-2017 M217IPrimate_IMinaisGerais_NorteDeMinasI25-01-2017 M73IPrimatelMinasGerais_Aguanill22-02-2017 M26IHumanlMinasGerais_SaoCaetanoDoSull07-01-2017

Wave of spread towards the SE-Brazil

Spread of YFV

(branch velocity: 48-94 km/month)

37°W

2007.2

ZIBRA-2 (ZIKV) results in N-Brazil

FIOCRUZ-BAHIA		HOME	MAPS	HOW TO USE
	ABVdb			
Arthropode Borne arbovirus sequence include new arbovir	Virus database - ABVdb, is a database containing phylogenetic, epidemi is, initially from Dengue , Zika and Chikungunya virus types. In the future rus into the database.	iological and clinica e, this project will b	al data fi e extend	rom ded to

Sequence Information

Virus	ŧ	Select Genotype \$	Select Genomic Region	ŧ	Host	\$
Sample Collection Ye	ar: s	select one or a range: (9			

Geografic Information

Continent \$	Continent Subdivisions	ŧ	Country	ŧ

Clinical Information

FIOCRUZ-BAHIA

C

Zika Virus: Data displayed by Country, Continent Subdivisions and Continent

♀ Less than 20 sequences 😜 Between 20 and 40 sequences 😜 Between 41 and 80 sequences 😜 More than 80 sequences

Developed by: FIOCRUZ / Salvador-Bahia, Brazil (Maria Inés Restovic, Vagner Fonseca, Marta Giovanetti, Luiz Alcantara). Contact: Maria Inés Restovic mrestovic@uneb.br and Dr. Luiz Carlos Junior Alcantara lalcan@bahia.fiocruz.br

Bioinformatic Tools

http://genomedetective.com/vis/typingtool/virus/

Submit Job Monitor job [] How to cite Introduction How to use Example sequences

Pan-Viral NGS Typing Tool Version Beta 1

The pan-viral typing tool is an easy to use, accurate and fast method to identify all virus species in the submitted input files. After the viruses have been identified at the species level, you can click through to one of the phylogenetic subtyping tools to further analyse the identified viruses. Currently subtyping tools for 10 viruses are installed.

The tool works with assembled FASTA input as well as with raw NGS data from FASTO files.

The tool can currently assemble genomes for 7298 viral species. The process uses Blast (fasta seqs) and/or DIAMOND (fastq) in order to identify a virus species from the ICTV master list and the RefSeq database. The tool also use SPADes to contruct de-novo assembles of viral genomes in order to provide assembled genomes in fasta and barn formats. Our tool accepts pair-ended FASTQ files (no limit on the number of reads) and FASTA files with up to 2000 sequences.

NGS: upload FASTQ reads

File type Pair end read Single end read Contigs

Supported formats: fastq or compressed fastq (zip, gz)

Paired Assessment tension in the network of the selection and the

Pared Jonation nenhum arquivo selecionado end 2:

Or let the server download the files for you.

Enter the Run Number and Download SRA file. Example: ERR233413

Download sin file:

Start NGS analysis

Show advanced options

Classical: upload FASTA

You may either:

- A. Paste one or more sequences in FASTA format in the input field.
- B. Upload a FASTA file. C. Upload FASTO files.
- D. Revisit results of a previous run

A) Paste nucleotide seguence(s) in FASTA format:

>21.AF100469.1992_dengue

DENDINE DATIONS

Start! Clear

B) Or, upload a FASTA with nucleotide sequences:

C) Or, revisit results from a previous run;

De novo assemblages from raw reads of metagenomics or amplicom sequencing using NGS methods http://genomedetective.com/vis/typingtool/virus/

Analysis result

You may bookmark this page to revisit results of this job (1098522063) later.

NGS Analysis of ERR138003_1

Preprocessing (00:00:24)

Started with 333078 reads, 34927 reads (10%) that did not pass qc, were removed.

Quality control (QC) reports

The preprocessing step will filter low quality reads and and remove potential adapters. Below are QC reports of the original submitted reads and the reads after preprocessing.

Before preprocessing	QC report of reads 1	QC report of reads 2
After preprocessing	OC report of reads 1	QC report of reads 2

Filtering (00:01:16)

Started with 298151 reads, 48743 reads (16%) that did not appear to be viral, were removed. <u>Download removed reads</u>.

Assembly and Identification (00:01:51)

Approximate Reads Count

Show phages

Coverage		Legend	Source	Identity	Approx. depth of coverage	Coverage	Approx. reads count	Contigs	Rega assignment
T M. DENT CONTRACTOR	Details		NCBI	79.6	-3770	100.7	-248000	1	Norovirus GII
	Details		NCBI	70.3	-475	57.6	-2530	1	Rotavirus A segment 9
r manananan T	Details		NCBI	52.5	-139	111.9	~1830	1	Rotavirus A segment 6
r no ornez rebena kao a	Details		NCBI	74.1	-42	103.2	~400	1	Rotavirus A segment 8
4	Details		NCBI	67	~19	51	~202	1	Rotavirus A segment 4
4	Details		ICTV	99.4	-3	24.7	-105	3	Equine arteritis virus
	Details		NCBI	76.8	-2	40.4	~22	1	Rotavirus A segment 3
Y HC STRETZ HERMAN CON CL S	Details		NCBI	78.6	-2	20.8	-12	1	Rotavirus A segment 1
							-253000	10	Totals

Download results: XML File Table (Excel format) Table (CSV format) Contigs (Fasta format) Consensus (Fasta format)

Typing Tools

http://genomedetective.com/vis/typingtool/virus/

Analysis result

You may bookmark this page to revisit results of this job (541435477) later.

Rega assignment	Sequences count	Percentage	Source	Legend
Zika virus	3	25	NCBI	
Chikungunya virus	1	8.3	NCBI	
Dengue virus 2	1	8.3	NCBI	
Coxsackievirus B3	1	8.3	ICTV	
Human gammaherpesvirus 8	1	8.3	NCBI	
Simian T-lymphotropic virus 1	1	8.3	NCBI	
Yellow fever virus	1	8.3	NCBI	
Norovirus GII	1	8.3	NCBI	
Hepatitis C virus	1	8.3	ICTV	
Human immunodeficiency virus 1	1	8.3	NCBI	
Totals	12	100		

Download results: Table (Excel format) Table (CSV format) Sequences (Fasta format)

Subtyping Tools

http://genomedetective.com/vis/typingtool/virus/

DENGUE, ZIKA & CHIKUNGUNYA VIRUSES TYPING TOOL

Zika Virus Typing Tool Version 0.9 - Alpha

Submit Job Monitor job [272801805] How to cite Introduction How to use Example sequences

Zika Virus Typing Tool Results

You may bookmark this page to revisit results of this job (272801805) later. A whole genome typing will take approximately 60 seconds, please be patient.

Name	Length	Virus	Serotype/Clade	Report	Genome
KR815989_Brazil_2015_zika	330	Zika Virus		Report	
KU955594_Uganda_1947	630	Zika Virus		Report	
KF383120_2001	700	Zika Virus		Report	2

Download results: XML File Table (Excel format) Table (CSV format) Sequences (Fasta format)

Developed by: FIOCRUZ/Bahia, Brazil (Maria Inés Restovic, Marta Giovanetti, Vagner Fonseca, Murilo Freire, Luiz Alcantara), KU Leuven, Belgium (Kristof Theys, Pieter Libin, Lize Cuypers, Ana Abecasis, Anne-Mieke Vandamme), Oxford, U.K. (Nuno Faria and Oliver Pybus), Evandro Chagas Institute, Brazil (Marcio Roberto Teixeira Nunes), CDC/OID/NCEZID (Gilberto A. Santiago), Emweb bvba, Belgium (Koen Deforche) and Africa Centre/UKZN, South Africa (Tulio de Oliveira).

Contact: Dr. Luiz Carlos Junior Alcantara, Dr. Marcio Roberto Teixeira Nunes, Dr. Nuno Faria and/or Prof. Tulio de Oliveira

Subtyping Tools

http://genomedetective.com/vis/typingtool/virus/

Zika Virus Typing Tool Version 0.9 - Alpha

Genomic surveillance on the ground

Past genomic surveillance (ZiBRA1 project)

Future genomic surveillance (ZiBRA2 project)

<u>http://zibraproject.github.io/</u> <u>https://twitter.com/zibraproject</u>

THANK YOU!

